① 如何通过三级建模 构建高效课堂模式
在我国基础教育课程改革十二年后的今天,许多学校都积累了丰富的课改经验,有的版已经初步形成权了自己的教学特色。但要深化基础教育课程改革,落实新的课程标准,体现课程改革的基本思路和理念,需要有稳定的教学模式,才能使学校的教学经验相对固化下来,便于青年教师按照新课改的要求尽快入轨。教学模式是在一定的教学思想和教学原则指导下相对稳定的教学结构和基本框架,是课改理念的基本载体,任何新的教学思想教学原则都要通过课堂教学模式来落实,所以有些专家说:课改进入深水区,改到深处是模式。
一所学校如何才能做到既有大致统一的教学思想,使全体教师有所遵循,又能体现不同学科的教学特点和不同教师的教学风格,做到既规范又灵活;既对广大教师有基本的要求,又不抹杀学科之间的差别,更不限制教师的创造性和积极性,使每个教师形成自己的教学风格。学校可以通过三级建模的方式逐步做到:一校一模,一科多模,一模多法。
② 中职公共基础课堂建模教学方式有哪些
教学方式是指教师在要求学生获取知识,提高能力,
获取学习方法的过程中所采用的方式。包括谈话式、
谈论式、归纳式讲授式、重难点讲授法、实践活动式等。
③ 数学教育考研 考哪些科目
英语政治数学
1.英语和政治是必须考的。
2.接下来有些学校要考数学,有些直接是2门专业课。版
3.建议根据具体学权校提问或者查找该学校的历年考研大纲.上面有规定详细考试科目的。
4.专业课不是教育学,而是几门并在一起的.一般来说有教育学原理外国教育史中国教育史教育研究方法教育心理学等等。
5.以北师大为例,
初试科目:政治、英语和数学(线性代数、数学分析);
一、须使用数学一的招生专业
1.工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
2.授工学学位的管理科学与工程一级学科。
二、须使用数学二的招生专业
工学门类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中所有的二级学科、专业。
④ 如何培养学生的建模能力
培养学生的建模能力。
1、教师要带头转变观念,增强自身“用数学的意识”,重视数学与现实生活的联系。九年义务教育裙上教学大纲与人教版的教科书,十分重视数学与生活实际相结合,注意培养学生解决实际问题的能力,教师要仔细体会,努力挖掘,使学生切实受到“把实际问题抽象成数学问题的训练”。
2、强化对学生进行数学语言转换能力的训练。
3、大力加强数学思想方法的教学,物别对数学模型的思想方法,要加以更多的关注,使之落实到实处。学者们对初中数学教材的研究表明,频数在40以上的数学思想方法,数学模型的频数最大,教师如能在平时的教学中充分暴露思维过程,善于引导学生分析数量关系,注重数学模型思想的渗透。
⑤ 如何通过抓取教育大数据来深化课堂教学改革
现代信息技术的发展为大数据的收集和分析提供了无限的可能,大数据时代的这一趋势也对教育产生了巨大的影响:一方面,在科技理性的指导下,通过多维度收集学生行为的数据并进行模型建构,可以对学生的学习行为进行预测;另一方面,大数据时代的人文主义转向使人们更关注教学活动的适应性,教育大数据的挖掘和利用可以更好地实现适应个人需求的定制化教学。
国际数据公司(IDC)认为大数据时代数据有4大特点——数据的规模大、价值大、数据流转速度快以及数据类型多。大数据的挖掘和利用对教育——特别是课堂教学——产生着深远的影响。学习科学家索耶认为:越来越多的学习将经过计算机中介发生, 并产生越来越多的数据,我们有必要运用这些数据分析什麼时候有效的学习正在发生。所以数据挖掘可以用於探究行为与学习之间的关系,如学习者的个体差异与学习行为之间有何关系,不同行为又会导致何种不同的学习结果等。2012年美国发布《通过教育数据挖掘和学习分析促进教与学》(Enhancing Teaching and Learning through Ecational Data Miningand Learning Analytics)提出大数据时代教育数据的特点:具有层级性、时序性和情境性,其中数据的层级性指,既收集教师层面的数据也收集学生层面的数据,既收集课堂数据也收集活动数据,为後期模型的建立提供了多维度的资源;数据的时序性是指,数据是实时的、连续的,为材料的前沿性提供了保障;而数据的情境性是指,数据是基於真实情境脉的,保证了模型的信度。
大数据技术能够促进以学生为本的学习,数据不仅仅是科技理性指导下收集数据和拟合成模型,并针对学生的群体行为做出预测判断,还可能在固有模型的基础上,通过诊断学生在课堂中的行为表现,对固有模型进行修改,使课程内容更加适合学生的长尾需求,实现个性化教学。大数据的利用可以支持对教育活动行为的建模预测,还可能支持教育实践中的适应性教学。前者是後者的基础,後者是前者的深化。
建模与预测导向的大数据应用
大数据时代数据促进教育变革的方法之一是收集和分析处理数据,并进行预测。现如今,由於数据记录、存储与运算的便捷性,海量的、多层次的数据可以便捷地加以收集,由随机抽样带来的误差因此减小,建模和预测可以基於全数据和真实数据,因而就更为精确。大数据时代通过探求海量数据的相关关系获得盈利的最成功的案例是亚马逊的市场营销,亚马逊收集读者网上查阅行为和购买行为数据,建立读者偏爱阅读模型,预测读者购买的群体行为,实现书籍的推荐。近几年,教育研究的对象逐渐关注学生的学习行为,其背後是一种学习观的转变,学习被视为一种识知的过程(knowing about),识知是一个活动,而不是将知识作为一个物品加以传递。识知总是境脉化的,而不是抽象的和脱离於具体情境的。识知是在个体与环境的互动中交互建构的,而不是客观准确的,也不是主观创造的。所以,学生的行为活动数据被认为是可以反映学生在学习过程这一情境化的动态变化进程中的情况。海量、多层次、连续的行为数据在收集後被拟合成模型,实现预测,如学习管理系统(LMS)的运用。然而,由於建模和预测依赖的基本原理为数理统计,其预判对象主要是学生的群体行为。
1.案例分析
学习管理系统(Learning Manage System)简称LMS,是基於网络的管理系统平台,用於监控学生学习活动行为,识别和预测学困生(student at-risk),并为其提供相应的帮助。大多数LMS包括5个部分:有和课程相关的学习资料、用於确保学生提交作业与完成测试的评价工具、用於沟通的交流工具(如邮件、聊天室等)、用於确保教师记录和存储学生的学习活动并发布活动截止日期的课程管理工具、用於帮助学生学习回顾和跟踪学习进程的学习管理工具。在高校大量使用的BB(Blackboard)平台就是一个常见的学习管理系统。系统记录了学生参与选修的网上课程的种类、在线时长、阅读和浏览的文章数量,反映学习者的学习行为。2008年,Leah P.Macfadyen和Shane Dawson教授在加拿大不列颠哥伦比亚大学通过分析5个本科班级使用BB平台选修生物课的数据,建立了预测模型。平台记录了学生课程材料的使用情况、参与学业交流情况和完成作业提交和考试情况。大数据时代教育数据记录的层级性在这裏充分显现,课程材料的使用包括记录在线时长、邮件的阅读时间、邮件的发送时间、讨论信息的阅读时间等。参与学业交流记录了发布新讨论的时间、回复讨论的时间、使用搜索工具所花的时间、访问个人信息的时间、文件的浏览时间、浏览谁同时在线的时间、浏览网页连结的时间等等。评价模块记录了评价的阅读时长和提交评价的时间等。通过应用统计工具描述散点图,发现了在LMS记录下学生在线时长和学业表现呈相关关系。在进行多元回归时,研究者发现,学业成就处在後四分之一的学生在线时间略长於平均时间,而学业成就处於前四分之一的学生的在线学习时间低於平均水平。紧接着,研究人员为了作出预测,利用逻辑斯特回归生成了一个预测模型,通过收集学生的新的行为数据,预测学生是否处於真正参与了学习活动,并得出如下结论:讨论举行的次数、邮件信息发送量和测评的完成情况这三个维度构成的模型可以预测学生的学业水平情况。
大数据时代,通过探求学生行为与学业水平之间的相关关系,建立模型,实现预测,能够对课堂教学产生重要影响。然而,数据建模过程中,为了保证模型的效度与信度,极端个别数据被处理,使模型只能实现群体行为的预测,不能针对学习者个体实现定制化和个性化。
2.建模与预测的不足
数据建模与预测的背後充分体现了实证主义的思想和方法。19世纪上半叶,以孔德为代表的社会学家提出了实证主义的基本信条:利用观察、分类,探求彼此的关系,得到科学定律。实证主义的哲学思潮到20世纪60年代,演变成一种科技理性,实践知识逐渐染上了工具性的色彩,专业活动存在於工具性的解决问题之中,所有的专业活动都被视为厘定目标、套用已知的方法解决问题的过程。这一期间,大量的学科被系统地整合发展,甚至包括教育学和社会学这样的「软科学」。用证据解决未知的问题,用数据预测未来一时成为潮流。
学生活动行为数据的建模尤其侧重体验实证主义的思想,模型注重成功教学行为的共性,忽视教师与学生群体的独特性需求时,科技理性的主导有可能使课堂教学被视为独立於真实境脉的模块,只要教学行为取得成功,就会被数据抽象化,形成模型,对学生群体行为产生预测。科技理性有赖於人们认同的共有目标,教学实践目标的厘定极其复杂,包含巨大的不确定性和独特性,甚至,由於社会角色的不同,还会带来价值冲突。一个稳定的、为所有人所认同的目标不复存在,依据科技理性精神和方法推理预测的行为模式并不可能满足每一个人的需求,教育变革在大数据时代下出现新的取向。
从数据模型到支持适应性学习
在数据建模的基础上实现教学的适应性是大数据时代促进教育变革的另一成果。数据建模及行为预测依旧属於科技理性指导下的行为模式,可能会造成忽视学生个性需求的现象,而个性化需求正是知识社会的重要特徵,个性化的教育也受到教育研究者、政策制定者和教育实践者越来越多的关注。教育系统设计专家赖格卢斯认为,教育投入没有达到效果的一个很重要的原因是忽视了社会的转型。「社会已经从工业社会步入了资讯时代,劳动力市场对人才的要求不再是工业时代在流水线上操作的工人,而是具有创新性思维、决断力强的知识性人才。」教学面临从产生清一色的劳工转向产生有判断力和适应性能力的人群。2010年,OECD的报告《The Nature Of Learning》中指出,适应性能力(adaptive competence)是21世纪核心竞争力,包括在真实的境脉中灵活并有创造力地使用有意义的知识和技能。吴刚在《大数据时代的个性化教育:策略与实践》中提出了个性化教育的必要性和必然性,指出「只有利用信息技术所提供的强大支持,才有可能真正实现个性化学习」。大数据时代的来临,正是个性化教育发展的一个良好契机。2012年,美国颁布了《通过教育数据挖掘和学习分析促进教与学》,提出大数据时代,通过收集在线学习数据,对数据进行分类和探寻数据之间关联的方式挖掘数据,形成数据模型。通过学生行为和模型的互动,形成适应性学习系统。概言之,我们可以以对行为数据的充分利用为基础,改变教学的内容和进度,构建适应性评价和教学系统,充分实现教育的定制化,满足学生的长尾需求。
1.案例分析:
适应性教学系统又称适应性学习系统,(Adaptive Learning Support System),简称ALSS系统,强调基於资源的主动学习,认为学习不是知识的传递,而是学习者的自我建构。自上世纪90年代以来,研究者开发了不少适应性学习系统,如1998年De Bra开发的AHA系统,2003年,Brandsford和Smith开发的针对任务型学习的MLtutor系统,以及近几年颇受关注的翻转课堂(Flipped Classroom Model)简称FCM系统。
内容传递模块:传递相关知识与信息支持学生的学习。
学习者数据库:存储学生在参与教学活动中的相关行为。
预测模块:包括学生信息和学生行为数据,跟踪学生的学习,并做出预判。
显示模块:为学生生成行为报告。
自适应模块:根据学生行为生成的报告,反馈到预置模型,为模型做出相应的改变,使之更符合学生。
干预模块:使教师、系统管理者和领导可以在系统运行时实施人为干涉。
学习者学习相关学科内容时,学习行为被记录跟踪下来,学生的学习行为数据被传送到後台,记录在学习者数据库内,作用於预测模块。预测模块通过改变内容传递模块,再次作用於学习者。在整个过程中,教师、教学管理者起干涉作用。
适应性学习系统是一个交互的动态系统,系统往往会提供给学生一些学习行为建议。奥地利针对学生的问题解决的过程设计了一个适应性学习系统。适应性学习系统的第一步是教育数据挖掘(ecational data mining),简称EDM。数据挖掘的过程包括数据收集、数据预处理、应用数据的挖掘和诠释评价发展结果。Moodle提出了CMS数据挖掘系统(Course Management System)。研究者先使用原始数据进行建模,第一步是原始数据的收集,原始数据大约包含2007年73名用户产生的28000活动例子,2008年97名用户产生的265000份解决问题的案例和2009年45名用户产生的115000个活动案例。除了记录学生解答问题时产生的数据,原始数据还收集了学生的信息、问题的信息和解决问题的步骤;在对数据进行分类後,归纳出问题解决的类型,利用很擅长拟合连续数据的Markvo Models(MMs)的一个子模型DMMs拟合了如上的连续性数据,通过添加判断学生学习行为的结果模型和一系列监控和调节模块,构成了整个面向问题解决的适应性系统。当学生使用这个模型时,模型会根据学生的行为数据为学生提供他们所偏爱的解决问题的过程与方法。
除了适应性教学系统,还有适应性评测系统。LON-CAPA(Learning Online Network with Computer-Assisted Personalized Approach)是一个计算机辅助的个性化网络学习测评平台,平台不提供课程设计和课程目标,而是一个教学工具。CAPA通过後台记录学生的基本资料,学生参与的互动交流、学业情况,针对学业课程中的疑难点,提供个性化的考试资源。
2.适应性转向的意义
在大数据时代,科技理性指导下的模型预判在面对结构不良的问题时显得应对能力不足。科技理性指导下的数据建模忽视学习的真实境脉,只能支持群体行为的预判,模型的推广可能会使人们忽视其实践成功背後的个体经验与具体情境,从而导致科技理性与哲学思辨对抗。然而,完全依靠哲学思辨和经验进行教学不仅不利於教育学科系统理论性的发展,也不利於课堂实践的管理与教师的培训。唐纳德·A.舍恩提出了一种适应性思维模式。他指出:「如果科技理性的模式在面对『多样』的情境时,是无法胜任、不完整的,甚至更遭的话,那麼,让我们重新寻找替代的、较符合实践的、富有艺术性及直觉性的实践认识。」适应性学习是在系统理论知识的指导下,针对个体差异,使学习内容和活动高度个性化的学习方式。
适应性平衡了理性与经验的两难,英国学者Hargreaves(1996)首次提出基於证据的教育研究向医疗诊断学靠拢。临床诊断学和教育的相似之处在於,他们都要面对变动不居、极其复杂的环境,在这样一个结构不良的系统中,充分意识到客体(患者或者学生)的独特性与共性,利用系统的专业知识解决问题。
Ralf St. Clair教授在参考医学临床实践研究的三要素後提出基於证据的教育研究的三要素——研究的证据、教育工作者的经验、学习者的环境与特点。其中,行为预测关注的是研究的证据,而适应性学习系统的建设则关注的是教育工作者的经验和学习者的环境与特点。
从预测行为到支持适应性教学的转向,是一种人文主义的转向,教育研究的重点从关注研究的证据走向关注教育工作者的经验与学习环境特点,关注以证据支持个性化学习的实践变革。证据不再是其在科技理性时代所处的指导决策的角色,而是被视作一种资源,教育工作者在大量的基於证据的课堂教学决策中找寻最适合自己特点和学生特点的方式,推进课堂教学流程。也就是说,大数据的更重要价值在於支持适应性学习,满足个性化学习和个性化发展的时代需要。数据的预测功能依赖於大数据收集数据的全面性与处理数据的便捷性,根据统计学原理对群体行为做出预测,一定程度上弱化了个体特徵和具体情境。其主要指向行为预判。而适应性是在模型与客体的交互作用上改变模型,如图3所示,数据的适应性运转模型比预测模型多了一个循环(loop until)系统,使其更加契合个人需求,其主要指向实践改进。预测是支持个性化学习的基础,而支持个性化学习是预测功能的深化和转化——从整体人群到个体学习者、从理论模型到实践策略的转化。
分析与启示
大数据时代由於数据量大,数据收集与携带便捷,使海量学生行为数据被挖掘、收集,通过数据建模对学习者行为的分析变得比前大数据时代更为全面和可靠。数据时代在数据的挖掘和预测上固然潜力十足,但是大数据时代更多的价值是满足学习者的适应性长尾需求,在预测行为的基础上,修改教学模式,使之个性化与定制化。从数据建模走向支持适应性教学,支持对象从群体转向了个人,对教育活动的影响从对行为的认识转向了教育活动的实践,从科技理性指导下的去境脉转向了基於真实情境的教学活动。
走向适应性,不仅改变人类行为方式,更重要的是改变了认知方式。前大数据时代人们在科技理性的指导下完全被数据证据左右(driven by the data),教师和学生、教育决策者和学校形成传统社会契约关系,当事人把自己百分之百地交给专业工作人员,而专业工作人员遵守契约,对当事人全心全意地负责,从而使专业工作人员享受至高无上的垄断性地位。大数据时代,教师不再是知识的控制者,他通过参与学生的学习活动,根据学生的先拥知识和认知特点、个性需求,不断地调整教学步骤、教学进度和难度。学生不用完全将自己有如病人交付给医生一般完全托付给教师。在学习的过程中,通过与教师的互动交流,在教师的协助下,成为自己学习的主体,控制并对自己的学习负责。由於教师精力有限,大数据时代下网络计算机辅助学习系统可以为教师和学生提供辅助指导的机会。
尽管如此,一方面,我们要拥抱大数据给我们带来的便捷的生活和高质量的教育,另一方面,我们需要保持警惕和防止因果关系和相关关系的误用,并且维护数据安全。
在推理方面,教育工作者需要警惕将相关关系和因果关系误用,以Leah P.Macfadyen教授的前述案例为例,BB平台在线时间的长短和学生的学业成就有相关关系,而非因果关系,成绩优异的学生在线时间低於平均在线时间,但不能说低於平均在线时间的学习导致学生成绩优异而要求学生减少在线学习时间。
此外,在信息安全方面,学生和教师的大量信息被收集和使用,在使用的过程中,必须制定相关私隐保护法,保证信息的安全,警惕数据滥用。学生的行为数据也不可以作为教师教学评优的依据,让大数据真正成为支持教学变革、提升教学效能、促进学生发展的手段,而不是控制教师和学生的工具。
⑥ 如何培养学生的数学建模能力
摘要:随着全球经济的发展,计算机的迅速发展,利用计算机去解决数学问题再用数学去解决实际问题显得尤为重要,而数学建模就是利用计算机与数学解决实际问题。本文从四个方面论述了现代数学应用中数学建模的重要性,详细阐述了数学建模在生活中的应用和怎样在学校教育中开展数学建模的教学这两个问题。通过对四个方面即概念、重要性、应用、养数学建模的能力的深刻论述得出结论,数学建模是架于数学理论和生活实际之间的一个桥梁,让人们看到了数学建模的价值,体会到数学建模的教学在现代教育中的重要地位和作用。
关键词:数学建模;综合素质;教学;数学应用
(一)数学建模的概念
数学建模非常广泛、简单,它一直与生活、学习息息相关。例如,在学习中学数学的课程时,根据应用题的已知量列出的数学等式就是最简单的数学模型,对方程进行求解的过程就是在进行简单的数学建模。数学建模就是应用数学模型来解决各种实际问题的方法。也就是通过对实际问题的抽象、简化、确定变量和参数、并应用某些“规律”建立变量,参数间的确定性的数学问题(也可称为一个数学模型)求解数学问题,解释验证所得到的解,从而确定能否应用于解决实际问题的多次循环,不断深化结果。它是用数学方法解决各种实际问题的桥梁。
(二)数学建模的思想内涵
⑦ 简单说说自己的数学课堂教学是怎样体现建模思想的
“兴趣是抄学习之母”,没有兴趣袭是学不好的。因为有兴趣,学生就会产生积极的情绪;为满足好奇心,学生就要看、要听、要想、要问,思维也被激活。教师精心设计教学,就是要激发学生学习的兴趣,并在成功的体验中使学生的兴趣收到保护和激励。教师要善于通过各种手段,找准教学的切入口,诱发学生的求知欲。
⑧ 怎样才能学好高中数学呢
高中数学辅导怎么样?高中数学辅导有用吗?
在中学和小学,在这个阶段,数学的难度还不是很大,家长就可以在家辅导孩子学习,但是到了高中数学的难度就比较大,已经提升了,不光是一个档次,对于很多学生来讲,总是不会总是摸不透家长再旁边也没有办法.在这个时候就需要高中数学辅导老师了.请高中数学辅导老师有用吗?
孩子在辅导班上课
自从上了高中,对于很多学生在数学学科这个方面,他们学得很吃力,老师的讲课速度不光会,并且有时候还跟不上,或者你没有听懂.通过高中数学辅导老师来帮助你弥补自己上课没有听懂的地方,最终可以提高学习成绩.
⑨ 高中数学建模小论文
高中数学建模的三种教学形式
作者(来源):左双奇* 位育中学 发布时间:2007-09-06
高中数学建模的三种教学形式
左双奇* (位育中学)
问题的提出
数学建模的教学实践在我国己有十多年的探索了,新的国家课程标准和新的教材都将数学建模内容列入学生必修内容。在探究性学习的探索中,一些学校选择了数学建模做为突破口;在进行数学课题学习的教学实践中,数学建模是其中的一种重要形式。近年来,我校为配合上海市中学生数学知识应用竞赛,对数学建模教学进行了积极的探索,针对人为地将数学建模教学与曰常课堂教学相割裂、教师和学生对数学建模这种具有多样性、新奇性的学习形式存在的畏难心理等困难,我校在数学建模的教学中主要采用了以下循序渐近的三个不同层次的教学形式来克服以上的困难。
研究方法和过程
一、常规课堂教学中的数学建模教学
广义地说,一切数学概念、数学理论体系、数学公式、方程式和算法系统都可以称为数学模形。如“椭圆的方程及图象”就是一个数学模型,“用‘二分法’求方程的一个近似解”也是一个数学模型。针对学生在数学建模中不会对实际问题进行抽象、简化、假设变量和参数,形成明确的数学框架的困难,我们在常规的数学课堂教学中,有意识地选择合适的教学内容,模仿实际问题中建立数学模型的过程,来处理教材中常规的学习内容,从而为学生由实际问题来建立模型奠定基础。
譬如,对于二面角内容的教学,在学生原有生活经历中,有水坝面和水平面成适当的角的印象;有半开着的门与墙面形成角的印象,那么我们在让学生形成二面角的概念时,应当从学生已有的这些认识中,舍弃具体的水坝、门等对象,而抽象出“从一条直线出发的两个半平面所组成的图形叫做二面角”,在这里,半平面是相对于水坝拦水面、门等的具体对象而进行合理假设得到的理想化对象,而在进一步研究如何度量一个二面角的大小时,我们是让学生提出各种方案,然后通过讨论、比较各方案所定义的几何量对给定的二面角是不是不变量,同时又简洁表达了二面角中两个半平面闭合程度的大小。以上关于二面角的概念及其度量方法的教学过程,实际上就是建立数学模型并研究模型的过程。
这个教学案例说明,在常规的曰常课堂教学中,完全可以选定适当内容,创设出数学建模的教学情景来处理教学内容,从而为学生真正面对实际问题来建立模型、研究模型创造条件。
二、教师提供问题的数学建模教学
教师提供问题的数学建模,基本上同目前开展的大学生、中学生数学建模竞赛中需要完成的建模任务相同。这种形式的数学建模学生不需要自己选定实际问题研究,而是由教师选定适合于学生水平的实际问题呈现给学生,在教师的启发、引导下,学生小组通过讨论,自己完成模型选择和建立、计算、验证等过程,最后用小论文的形式呈现自己的研究成果,这种形式的数学建模学生已真正接触到实际问题,并经历建模的全过程。
经过了曰常课堂教学中的数学建模教学,学生对什么是数学建模已有了一定的认识,并已经历了由具体问题抽象出明确数学框架的锻练,因此,我们在这种形式的数学建模教学中,主要是加强以下几个方面的教学。
1.提供的实际问题必须难易适度,应当适合于学生的认知水平。对于较难的问题,我们往往给出必要提示,如启发学生通过提出合符常理的假设来将复杂的问题化为可以建模的问题;通过提示学生设定相关变量来达到使模型容易建立等。
教师可从选定的实际问题、模型假设、变量设定等方面来控制难度,其中模型假设和变量设定是直接影响到模型建立的关键因素,对此关键点教师没计适当的教学形式,是“教师给定问题型”建模教学的关键。
2.在“教师给定问题型”的数学建模的实践中,学生将经历建模的全过程,其中在模型的求解这一环节,往往需要借助计算机选择一个合适的数学软件平合,通过数学实验来求解模型。我校近年来,对这一环节的教学比较重视,每年都对将参加上海市中学生数学建模夏令营的学生团队进行数学软件Matlab的使用辅导,通过使学生精通一种软件的使用,再介绍学生自己钻研其它几种数学软件的使用,从而为学生正确求出模型的解,铺平了道路。
3.在近五年对学生的辅导过程中,我们感到以下一些问题可用来训练学生的数学建模能力,它们是:(1)路桥问题,(2)限定区域的驾驶问题,(3)交通信号灯管理问题,(4)球的内接多面体问题,(5)螺旋线问题,(6)最短路问题,(7)最小连接问题,(8)选址问题,(9)面包进货问题等。
4.在“教师给定问题型”的数学建模实践中,学生的研究结果,必须会用论文进行表达,会表达自己的研究思路及结果,是一个学生综合素质的体现。由于数学建模论文的撰写有一定的格式要求,当然这种格式要求是为了更好地使作者展现自己的研究结果,也是对论文质量的保证。所以,我们在教学中对学生论文撰写的格式进行了专门的辅导,一般地说,中学生的数学建模论文格式,应当具有以下的形式。
(一) 论文摘要:做什么?用什么方法?借助什么工具?得出什么结论?为什么用这个工具?所得结果还有何推广应用?
关键词:用以体现论文主要特色的几个词汇。
(二) 问题的重述:用自己的语言将问题重述一遍,有自己的理解。
(三) 必要的假设或假定:(1)根据实际情况假定,要合乎常理,简化原始问题;(2)变量的定义和声明。
(四) 问题分析:变量之间会有什么关系?已知了什么?需在数学上解决什么?
(五) 模型:能够写成数学表达式的一定要写,可用几种不同的模型。
(六) 模型求解:用各种手段、包括借助计算器和计算机得出结论。
(七) 问题的讨论:模型及使用的工具的优缺点(准确性、局限性),所得结论和所用方法可否延伸到其他领域。
(八) 附录:引用的原始资料,编写的程序等。
从以上八个方面对学生进行辅导,提出要求,将会有效保证学生正确用论文表达自己的研究结果。
三,学生自选问题的数学建模教学。
有了前面两种形式的建模教学。学生具备了一定的建模水平后,就可进入学生自选问题的数学建模教学阶段了。这一阶段是要求学生依据自己已掌握的建模知识和具备的经验,自己选定一个实际问题,通过建立数学模型加以解决,最后以论文的形式反映自已的研究成果。这一阶段的数学建模教学实践,若开展的好,则广大学生在解决实际问题中所表现出的挑战困难的勇气和丰富的想象力都将是我们老师始料未及的。近年来我校在这种形式的建模教学实践中,主要是加强了如下三个方面的指导。